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A three-dimensional boundary-integral algorithm is developed to study the squeezing
of a deformable drop through a tight constriction formed by several solid particles
rigidly held in space. The drop is freely suspended and driven by a flow that is uniform
away from the solid obstacles. Particular emphasis is on the trapping mechanism and
flow conditions close to critical, when the drop squeezes with high resistance. The
problem is a close prototype of drop–solid interactions for emulsion flow through a
granular material; such interactions are much more lubrication-sensitive than drop–
drop interactions and require advanced numerical tools to succeed. The algorithm
is based on the Hebeker representation for the solid–particle contribution, leading
to a well-behaved system of second-kind integral equations, combined with novel
regularization techniques for singular and near-singular boundary integrals; high-
order near-singularity subtraction for the solid-to-drop double-layer contribution is
the most crucial element. Simulations are performed for drop squeezing between
(i) two close spheres, (ii) two parallel spheroidal disks, and (iii) three close spheres
forming an equilateral triangle (including the case of close solid–solid contact). The
drop non-deformed diameter is from two to several times larger than the inner
constriction diameter and, in some simulations, the drop decelerates 103–104 times
in the throat before being able to pass through. The effects of the constriction type,
capillary number, and viscosity ratio on the drop velocity in the throat, exit time, and
drop–solid spacing (of the order of 1% of the particle size) are explored in detail;
critical capillary numbers (below which trapping occurs) are accurately determined.
Even for a substantially supercritical capillary number, the drop has to nearly coat
solid particles to be able to pass through a tight constriction. The ability of the
algorithm to simulate both supercritical and subcritical conditions (when the drop is
trapped, with a small but non-zero drop–solid spacing) is vital for future applications
to large-scale simulations of emulsion flow through granular media.

1. Introduction
Emulsion flow through a granular material is a problem of fundamental importance

relevant to many industrial applications (oil filtration through underground reservoirs,
flow through fixed-bed catalytic reactors, etc.). Among fundamental issues are the pres-
sure gradient–flow rate relationship and determining the conditions when the dispersed
phase flow rate effectively vanishes owing to emulsion drop blockage in the pore
throats between granular particles. The mechanics of emulsion flow through a granular
material is very complex because of the intricate geometry of the pore space. For
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flows strong enough to overcome drop blockage in the pores by capillary forces,
the possibility of drop breakup is another complication. If the emulsion drops were
small compared to the typical pore diameter, a continuum model for an emulsion
with some effective properties would be appropriate; unfortunately, in many cases of
practical interest, emulsion drops are not so small (Kokal, Maini & Woo 1992), and
more complex microstructural modelling must be developed instead.

To simplify the problem, many workers studied the axisymmetrical pressure-driven
creeping motion of a single drop through constricted capillary tubes as a prototype
model for emulsion flow through a porous material. Olbricht & Leal (1983) and
Hemmat & Borhan (1996) performed experiments to measure pressure drop-flow rate
characteristics and elucidate conditions for droplet breakup. Martinez & Udell (1988)
analysed the problem by boundary-integral simulations, but did not observe snap-off.
Tsai & Miksis (1994), in their boundary-integral study, observed breakup, with a
sizeable minor fragment, even for drop-to-medium viscosity ratio of λ= 0.001. In
addition to these and other studies (Leyrat-Maurin & Barthès-Biesel 1994; Borhan &
Hemmat 1997; Quèguiner & Barthès-Biesel 1997) on axisymmetrical motion through
constrictions, there is a rich body of literature on single drop motion through straight
capillary tubes not discussed here (see Olbricht 1996 for a comprehensive review on
early work). A distinctive feature of a constricted capillary tube, which makes this
model more relevant to emulsion flow through granular materials, is the existence of
the critical forcing (for a sufficiently large drop), below which the drop cannot pass
the constriction and is trapped instead at the pore throat, with very small drop–wall
spacing. The trapping mechanism, however, has been studied much less than drop
breakup in capillaries, because of numerical difficulties. The work of Leyrat-Maurin &
Barthès-Biesel (1994), on a related problem of a deformable capsule in a hyperbolic
constriction, was the first attempt to address this important issue, but, unfortunately,
their calculations suffered from the inability of the algorithm to handle small drop–
wall spacings inherent in the trapping phenomenon. To our knowledge, this restrictive
feature is common for all previous axisymmetrical calculations for drop/capsule
motion through constricted tubes based on solving the first-kind integral equation
for wall tractions. A recent preconditioned three-dimensional version for a capsule
in a straight capillary (Pozrikidis 2005), which is also based on solving the first-kind
integral equation for tractions, has the same limitation. Instead of a boundary-
integral method, Graham & Higdon (2000a, b) used a finite-element approach and
fine adaptive domain meshing to study axisymmetrical drop squeezing through a
tight constriction, with the drop non-deformed radius being up to twice as large
as the throat radius. Although the thin lubrication layers complicate computations,
Graham & Higdon were able to address the near-contact drop–wall interaction and
estimate the critical forcing level necessary for squeezing. Moreover, the study of
Graham & Higdon (2000a, b) is for non-zero Reynolds numbers, Re, and includes
the effect of oscillatory forcing on drop squeezing. One of the conclusions from their
work is that inertial effects do not manifest themselves until the property number
Re/Ca reaches O(102); presumably, this conclusion can stimulate further work in the
creeping-flow aproximation, since the microscale Reynolds number for emulsion flow
through a granular material is often small.

In a different approach, a porous material skeleton was modelled as a random
dilute bed of spheres or parallel fibres. Mosler & Shaqfeh (1997) replaced the effect of
bed particles/fibres on a droplet by an effective stochastic Gaussian field derived from
theory; perturbation solutions for small capillary numbers were used to predict the
onset of drop breakup. Patel et al. (2003) used detailed boundary-integral solutions
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for a single drop in an effective field around an individual fibre to include near-field
effects and simulate large deformations and breakup. Their approach is similar to that
for drop breakup in turbulent flows (Cristini et al. 2003); the use of the free-space
Green function (instead of the Green function for the domain exterior to the fibre)
was justified for dilute beds, when the average pore size is large compared to the
drop dimensions. Both ‘graze’ and ‘hairpin’ modes of breakup were simulated by Patel
et al. (2003), in qualitative agreement with their experiments.

Although these studies have provided substantial insight into the drop motion
through confined geometries, it is recognized (Olbricht 1996) that more realistic
models are required to fully understand and predict emulsion flow through granular
materials. For example, drop trapping in three-dimensional interparticle constrictions
is qualitatively different from pore plugging in tubes; there are many paths available
for flow in a granular material, while there is only one path in the tube flow
(Olbricht 1996). Obviously, a complete model for a granular material would be a
random arrangement of globular particles (e.g. spheres or spheroids) in mechanical
equilibrium (random ‘loose’ or ‘close’ packings; e.g. Zinchenko 1994, 1998), or, at
least, a very dense unconsolidated packing. Such a model can be accurately prepared
in a laboratory, with almost full control of microstructural parameters. In principle,
a problem of creeping multidrop motion through a periodic box containing a large
number of fixed solid inclusions can be formulated, and the pressure gradient–flow
rate relationship can be rigorously established by long-time simulations, after adequate
averaging.

As the first step towards the solution of this well-defined, but challenging simulation
problem, we study here the prototype problem of flow-induced squeezing of a single
deformable drop through a tight three-dimensional constriction formed by several
solid particles rigidly held in unbounded space, with particular emphasis on the
trapping mechanism and flow conditions close to critical. Under such conditions, the
drop squeezes with maximum resistance (and very small drop–solid clearance), which
makes this range particularly interesting to explore. The study of this problem not only
allows us to clarify the salient features of emulsion squeezing through realistic granular
materials, but also to develop and test numerical tools which could be combined in
future work with efficient multipole acceleration techniques (Zinchenko & Davis 2000,
2002, 2003) for large-scale simulations. Compared to drop–drop interactions at finite
deformations (e.g. Loewenberg & Hinch 1996, 1997; Zinchenko, Rother & Davis 1997,
1999; Bazhlekov, Anderson & Meijer 2004; Zinchenko & Davis 2004), the solution
for drop–particle interactions is much more lubrication-sensitive, and has required
advanced numerical techniques to succeed. The boundary-integral formulation is
discussed in § 2. We start from Hebeker’s (1986) representation for solid–particle
contributions (as a proportional combination of a single- and double-layer potentials)
to arrive at a system of well-behaved second-kind integral equations for the interfacial
velocity on the drop surface and the Hebeker density on solid surfaces. Although
Hebeker (1986) originally developed his approach for a single solid particle in a flow,
the idea is also fruitful in the present problem, allowing for robust solutions both
in the supercritical and subcritical range (when the drop is trapped); this feature
could not be achieved with other boundary-integral formulations. It must be stressed
that the approach based on the first-kind integral equation for tractions on the
solid boundaries, which was so widely used in axisymmetrical tube flow simulations,
is unsuitable in the present, more demanding three-dimensional problem owing to
difficulties with close-contact interactions (as discussed in detail in § 4). Even more
important for the present problem is the use of special desingularization techniques,
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Figure 1. Sketch of the interaction of deformable drops (light shading) with solid particles
(dark shading), not to scale.

especially novel high-order near-singularity subtraction in the solid–drop double-
layer contribution, to handle close-contact drop–solid interactions. These techniques,
along with other aspects of the algorithm, are described in § 3. In § 4, we give the
results of numerical simulations for drop squeezing through a two-sphere and two-
disk constriction, and between three close spheres forming an equilateral triangle
(including the case of close contact). The effects of the constriction type, capillary
number and viscosity ratio on the drop velocity in the throat, exit time and the
drop–solid spacing are explored in detail; critical capillary numbers (for squeezing
to occur) are accurately determined. Calculations are performed in a challenging
range of parameter values, with the initial (non-deformed) drop diameter much larger
than the inner constriction diameter and conditions not far from critical; in some
simulations, the drop decelerates up to 103–104 times in the constriction, but it is still
able to pass through. The trapped steady states (with small but non-zero drop–solid
spacing) found for subscritical conditions appear to have some qualitative similarity to
the stationary axisymmetrical solutions of Nemer (2003) and Nemer et al. (2004) for
a drop near a plane wall and for two drops pressed together by a compressional flow,
although the present problem is very different. The ability of our three-dimensional
algorithm to maintain these trapped states virtually indefinitely, without a numerical
crash, is a highly non-trivial feature (which could not be achieved without combining
the Hebeker representation with new desingularizations) and is very important for
the success of future large-scale simulations, as discussed in § § 4–5. The Appendices
contain some essential analytical and numerical details of our method.

2. Boundary-integral formulation

Consider a finite number Ñ of three-dimensional deformable drops with surfaces

S̃1, . . . , S̃Ñ freely suspended in a Stokes flow moving past a group of N̂ solid particles
(figure 1). The particles are assumed to be rigidly held in space, with no-slip boundary

conditions u = 0 for the fluid velocity u on particle surfaces Ŝ1, Ŝ2, . . . , ŜN̂ . The drops
are free from surfactants, and they have density ρ matching that of the surrounding
fluid, and a constant surface tension, σ . The fluids inside and outside the drops are
Newtonian, with viscosities µ′ and µe, respectively (figure 1). The flow at infinity,
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u∞( y), is arbitrary in the formulation and solution method, but we will consider a
uniform flow as a definite case in the calculations of § 4.

For numerical simulations, it would be easier to allow solid particles to move and
rotate in this model formulation. However, such freedom of motion would significantly
affect the mechanism of drop squeezing between solid particles and would not be
relevant to future simulations of emulsion flow through a fixed-bed granular material,
where solid particles form a rigidly held skeleton. On the other hand, with no-slip
boundary conditions u = 0, this small-scale problem serves as a prototype for future,
much more complex multidrop–multiparticle simulations to study salient features of
the squeezing process and test the robustness of boundary-integral techniques for such
simulations.

To derive a well-behaved system of Fredholm second-kind integral equations for this
problem, we combine the ideas previously used for solitary drops (Rallison & Acrivos
1978) and single solid particles (Hebeker 1986). For a point y outside the drops and
solid particles, Green’s theorem applied to the Stokes flow �u( y) = u( y) − u∞( y) gives

�u( y) =

Ñ∑
β=1

∫
S̃β

[
1

µe

G(r) · �Te
n(x) − �ue(x) · τ (r) · n(x)

]
dSx

+

N̂∑
β=1

∫
Ŝβ

[
1

µe

G(r) · �Te
n(x) − �ue(x) · τ (r) · n(x)

]
dSx, (2.1)

where r = x − y, �Tn = (T − T∞) · n, with T and T∞ being the stress tensors for the

flow fields u and u∞, respectively, and n(x) the outward unit normal at x ∈ S̃β or

x ∈ Ŝβ (figure 1). Finally G(r) and τ (r) are the free-space Green tensor and the
corresponding fundamental stresslet:

G(r) = − 1

8π

[
I

r
+

r r
r3

]
, τ (r) =

3

4π

r r r
r5

. (2.2)

The index e marks the values related to the domain exterior to drop and particle

surfaces. Green’s theorem for the interior of each surface S̃β , Ŝβ allows us to replace
�ue and �Te

n by ue and Te
n, respectively, in (2.1). Besides, using Green’s theorem for

the interior flow with viscosity µ′ inside each drop S̃β yields

0 =

∫
S̃β

[
1

µe

G(r) · Tint
n (x) − λuint (x) · τ (r) · n(x)

]
dSx, (2.3)

where λ= µ′/µe is the viscosity ratio, and the index int relates to the quantities inside
a drop.

Combining (2.1) and (2.3), and using interfacial boundary conditions for the velocity
(ue = uint ) and stress on drop surfaces gives a representation for the flow velocity in
the domain exterior to the drops and solid particles

u( y) = F( y) + (λ − 1)

Ñ∑
β=1

∫
S̃β

u(x) · τ (r) · n(x) dSx + S.P .C.( y), (2.4)

where

F( y) =
1

µe

Ñ∑
β=1

∫
S̃β

2σk(x)n(x) · G(r) dSx + u∞( y), (2.5)
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k(x) = (k1 + k2)/2 is the mean surface curvature at x ∈ S̃β , and 2σkn = Te
n − Tint

n is the
stress jump across the interface (see, e.g. Pozrikidis 1992). The last term in (2.4), which
we call S.P .C. (‘solid-particle contribution’), stands for additional integrals over the
solid surfaces:

S.P .C.( y) =

N̂∑
β=1

∫
Ŝβ

[
1

µe

G(r) · Te
n(x) − u(x) · τ (r) · n(x)

]
dSx (2.6)

(the second term in the brackets vanishes for no-slip boundary conditions). This
term cannot be expressed as a sum of double-layer contributions from solid surfaces,
since double-layer potentials can only describe exterior flows with zero hydrodynamic
force and torque acting on solid boundaries (e.g. Odqvist 1930; Ladyzhenskaya 1969;
Pozrikidis 1992), which is not the case for our problem. Representing S.P .C.( y) as a
sum of single-layer distributions over Ŝβ (as the form (2.6) would suggest for u = 0
on Ŝβ) and satisfying the boundary conditions yields a system of integral equations
of the second kind for u(x), but of the first kind for the potential density on the solid
boundaries. This method, however, could not succeed in any of our simulations for
drop squeezing between solid particles because of ill-conditioning (see § 4 for more
detail) and, hence, it is not a prospective approach for emulsion flow simulations
through a granular material (although there have been successful applications of the
first-kind integral equation to less demanding problems in the literature).

Two alternatives for handling (2.6) have been explored in the present work. One
is to use the representation of Power & Miranda (1987) for each integral in (2.6) as

a double-layer distribution over Ŝβ plus additional stokeslet and rotlet contributions
from the particle centre x̂c

β to complete the range:∫
Ŝβ

q(x) · τ (r) · n(x) dSx + Fβ · G
(

y − x̂c
β

)
− Tβ

8π
×
(

y − x̂c
β

)∣∣ y − x̂c
β

∣∣3 , (2.7)

where the hydrodynamic force Fβ and torque Tβ acting on Ŝβ are related to the
rigid-body projection of the potential density q(x) through the relations (in the
non-dimensional form)

Fβ =

∫
Ŝβ

q(x) dS, Tβ =

∫
Ŝβ

(
x − x̂c

β

)
× q(x) dS. (2.8)

Using (2.7)–(2.8) and satisfying the boundary conditions on the particle and drop
surfaces yields a system of Fredholm second-kind integral equations for the potential

density q(x) on Ŝβ and velocity u(x) on S̃β . From our experience, this approach, when
combined with the new desingularization techniques of § 3, is capable of very accurate
simulations of drop squeezing between solid particles for essentially supercritical
conditions (when a drop moves through a constriction with relatively little resistance),
even for modest drop and particle surface discretizations. Unfortunately, the major
difficulty associated with (2.7) is that we could not simulate near-critical and sub-
critical conditions (when a drop is trapped in a constriction for a long time, or
virtually indefinitely, without being able to pass through); in all such cases, our
calculations based on (2.7) were observed to crash in a relatively short time, leading
to drop–solid surfaces overlapping. Note that, if the problem is solved exactly, the
drop and solid surfaces would never touch (in the absence of molecular forces). This
method can be generalized by introducing arbitrary factors before the integrals (2.8),
but this freedom did not alleviate the difficulties.
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We have found, instead, that robust simulations in the present class of problems
can be made based on Hebeker’s representation for S.P .C. Each integral in (2.6)

represents a regular Stokes flow exterior to Ŝβ and, according to Hebeker’s (1986)
theory (Theorem 2.1 therein), it can be uniquely represented as a combination of

single-layer and double-layer distributions over Ŝβ , given a proportionality factor
η > 0 between the densities of the two potentials. Accordingly, we assume

S.P .C.( y) =

N̂∑
β=1

∫
Ŝβ

q(x) · [2τ (r) · n(x) + ηG(r)] dSx, (2.9)

where q(x) is a yet unknown Hebeker density, and η > 0 is an arbitrarily chosen

factor. Taking the limit y → S̃β or y → Ŝβ and using jump properties of the double-
layer potential give a system of second-kind integral equations for u(x) and q(x). By
Wielandt’s deflation (Kim & Karilla 1991; Pozrikidis 1992), this system is recast in
terms of w = u − κu′ (where κ = (λ− 1)/(λ+ 1) and the prime denotes the rigid-body
projection of u), to avoid ill-conditioning for extreme viscosity ratios λ� 1 or λ � 1.
So, the coupled system of equations to be solved at each time step takes the form

w( y) =
2F( y)
λ + 1

+ κ

⎡⎣2

Ñ∑
β=1

∫
S̃β

w(x) · τ (r) · n(x) dSx − w′( y) +
n( y)

S̃α

∫
S̃α

w · n dS

⎤⎦
+

2

λ + 1

N̂∑
β=1

∫
Ŝβ

q(x) · [2τ (r) · n(x) + ηG(r)]dSx (2.10)

on drop surfaces ( y ∈ S̃α), and

q( y) = F( y) + (λ − 1)

Ñ∑
β=1

∫
S̃β

w(x) · τ (r) · n(x) dSx

+

N̂∑
β=1

∫
Ŝβ

q(x) · [2τ (r) · n(x) + ηG(r)] dSx (2.11)

on solid surfaces ( y ∈ Ŝα). The rigid-body projection in (2.10) is calculated simply as

w′( y) = A + B ×
(

y − x̃c
α

)
, where A is the average of w over the drop surface S̃α , x̃c

α

is the drop surface centroid, and the vector B is calculated from the solution of a
3 × 3 system (Zinchenko et al. 1997) with a positive-definite matrix:{∫

S̃α

[(
x − x̃c

α

)2
I −
(

x − x̃c
α

)(
x − x̃c

α

)]
dS

}
B =

∫
S̃α

(
x − x̃c

α

)
× w dS. (2.12)

Once w is known, the interfacial velocity u =w + κw′/(1 − κ) can be recovered.
As for the method based on (2.7), simple iterations (successive substitutions)

are divergent for the system (2.10)–(2.11), but successful solutions are obtained by
alternative iterative techniques (§ 3). In the limit of fine surface discretizations, the
results are independent of the arbitrary parameter η > 0, but, in practice, η should
not be set too large or too small. The limit η → ∞ corresponds to first-kind integral

equations on Ŝβ , which was an unsuccessful approach in the present simulations (see
§ 4). The opposite limit η � 1 makes the representation (2.9) range-deficient and also
leads to ill-conditioning, with excessive number of iterations per time step. In the
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present class of problems, values of η ∼ â−1 (where â is a characteristic size of solid
particles) are close to optimal.

We have found in several tests for essentially supercritical conditions that (2.7) can
provide more accurate results for drop squeezing between solid particles compared
to the Hebeker reprsentation (2.9), for the same degree of drop and solid surface
discretizations; however, the method based on (2.7) required a larger number of
iterations per time step (1.5–2 times) compared to solving (2.10)–(2.11). A decisive
advantage of the Hebeker’s representation (2.9) is that it also allows for successful
simulations in near-critical and subcritical ranges, when some drops are trapped in
the constrictions with very small clearance between drop and solid surfaces. Moving
the unknowns w, q to the left-hand side, (2.10)–(2.11) can be written in the operator
form AX = b for X = (w, q), and all real eigenvalues of the operator A can be proved
to be positive; for λ � 1, it can be shown additionally that all eigenvalues of A are
real. Presumably, these spectral properties of the equations (2.10)–(2.11) (which we
were not able to prove when the alternative representation (2.7) is the starting point)
serve the robustness of our algorithm and provide stability of the iterative schemes.
Unless otherwise stated, all the results in the present work were obtained based on
the equations (2.9)–(2.11). Additional details of the algorithm are given below.

3. Numerical method
3.1. Singularity and near-singularity subtractions

The integrals (2.5), (2.10)–(2.11), as written, are not acceptable for numerical
calculation owing to singularity in the kernels G(r) and τ (r) at r = x − y = 0, and so
our numerical solution is preceded by singularity subtractions. Also, solid particles
in a granular material may be (nearly) in contact (which is the case for some of
our simulations in § 4). Moreover, in all interesting cases, large drops move through
tight contrictions between solid particles with very small surface clearance. For all
these reasons, we found that the success of numerical simulations in § 4 is crucially
dependent on the techniques to address the singular (x = y) and near-singular (x ≈ y)
behaviours of the integrals (2.5), (2.10)–(2.11), and different cases (drop or particle
‘self-interactions,’ solid–solid interaction, solid–drop and drop–solid contributions)
have to be handled individually, as described below.

Drop self-interactions

For y on a drop surface ( y ∈ S̃α), the integrals (2.5), (2.10)–(2.11) over S̃α are
transformed in a standard way:∫

S̃α

k(x)n(x) · G(r) dSx =

∫
S̃α

[k(x) − k( y)]n(x) · G(r) dSx,

2

∫
S̃α

w(x) · τ (r) · n(x) dSx = 2

∫
S̃α

[w(x) − w( y)] · τ (r) · n(x) dSx + w( y)

⎫⎪⎪⎬⎪⎪⎭ (3.1)

using the well-known integral identities for G and τ , which completely eliminates the
O(r−1) singularity of the original integrands in the left-hand side of (3.1). The regular
right-hand side integrals (3.1) are calculated on an unstructured mesh of triangles on

S̃α by a trapezoidal rule. In general, for any smooth function φ(x) on S,∫
S

φ(x) dS ≈
∑

i

φ
(

xi
)
�Si, �S = 1

3

∑
�S, (3.2)
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where the summation in the second relation (3.2) is over all flat triangle areas �S

sharing mesh vertex xi (this simple but efficient procedure of reassigning triangle
contributions to vertices is due to Rallison 1981). The rule (3.2) is applied to

calculate (3.1) for all mesh nodes (vertices) y = yj ∈ S̃α , with xi = y excluded from
the summations.

Solid self-interactions

For y on a solid surface ( y ∈ Ŝα), singularity subtraction is also made:∫
Ŝα

q(x) · [2τ (r) · n(x) + ηG(r)] dSx

= q( y) +

∫
Ŝα

[q(x) − q( y)] · [2τ (r) · n(x) + ηG(r)] dSx + ηq( y)
∫

Ŝα

G(r) dSx, (3.3)

where the first non-singular integral in the right-hand side of (3.3) is calculated on an
unstructured mesh using (3.2). Unlike for drop surfaces, there is an additional integral
in the right-hand side of (3.3) that must be calculated analytically or, at least, much
more accurately than the first integral for the subtraction procedure (3.3) to make
sense. Leaving aside the case of arbitrarily- shaped solid particles, we have developed
an analytical calculation of the additional integral (3.3) for spherical and spheroidal
particles (prolate and oblate); the (semi) analytical calculation can probably be
done for some other shapes, including three-dimensional ellipsoids and more exotic
toroidal particles. This present limitation on our techniques still appears to provide
enough generality for future studies of multidrop motion through a random granular
material with globular grains; assuming solid particles of more complex shapes would
introduce too many parameters to make it a tractable study. For a sphere of radius
aα , the additional integral (3.3) takes a simple form∫

Ŝα

G(r) dSx = −a2
α

2

[(
1 +

a2
α

3R2

)
I

R
+

(
1 − a2

α

R2

)
RR
R3

]
, R = y − x̂c

α (3.4)

valid for all R = ‖R ‖� aα (Appendix A). For spheroidal particles (prolate and oblate),
an efficient way of calculating the integral (3.4) through fast-convergent expansions
in spheroidal harmonics is also given in Appendix A.

Solid–solid interactions

When the node y belongs to a solid surface Ŝα different from an integration surface

Ŝβ , we employ the general idea of ‘near-singularity’ subtraction (originally offered
by Loewenberg & Hinch 1996 for drop–drop interaction). Namely, the solid-particle

contribution (2.12) of Ŝβ is transformed as∫
Ŝβ

q(x) · [2τ (r) · n(x) + ηG(r)] dSx

=

∫
Ŝβ

[q(x) − q(x∗)] · [2τ (r) · n(x) + ηG(r)] dSx + ηq(x∗)

∫
Ŝβ

G(r) dSx, (3.5)

where x∗ = x∗( y, β) is the mesh node (vertex) on Ŝβ that is closest to y; the additonal

integral (3.5) is handled analytically by (3.4) (with Ŝα replaced by Ŝβ) for spherical
particles, or by the expansions of Appendix A for spheroids. Transformation (3.5)

is only essential for y = x − r close to Ŝβ , but we apply it for all y ∈ Ŝα to ensure
smoothness of the procedure. It can be noted that, in general, (3.5) (unlike (3.3)) does
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not completely eliminate singular behaviour of the integrand, but only reduces it to
O(r−1) from O(r−2). Nevertheless, (3.5) is sufficient in the present applications, since
our solid particles have no relative motion, and there are no solid–solid lubrication
contributions.

Solid–drop contributions

Compared to drop–drop interactions at finite deformations (Zinchenko et al. 1997,
1999; Zinchenko & Davis 2000, 2002, 2003), drop squeezing between solid particles
is much more lubrication sensitive. We found that the ability of a three-dimensional
algorithm to simulate drop motion through tight constrictions (with inner diameter
from two to several times smaller than the non-deformed drop diameter), especially
for conditions not far from critical, is mostly determined by how accurately the
solid–drop double-layer contribution∫

Ŝβ

q(x) · τ (r) · n(x) dSx, y = x − r ∈ S̃α, (3.6)

is represented for y close to Ŝβ . The relatively simple idea of the leading-order near-
singularity subtraction for (3.6) (as in (3.5)) did not allow our simulations to succeed,
leading to a crash with drop–solid overlapping. We found instead a novel tool of
high-order near-singularity subtraction, as detailed below, to be very promising.

In addition to the global Cartesian coordinate system (x1, x2, x3), consider a local

(intrinsic) coordinate system (x ′, y ′, z′) centred at a mesh node xi ∈ Ŝβ with the
z′-axis along the normal vector n(xi). The basis unit vectors of the x ′- and y ′-axes
are e′

1 = (e′
11, e′

12, e′
13) and e′

2 = (e′
21, e′

22, e′
23), respectively, in global coordinates. The

intrinsic coordinate system (x ′, y ′, z′) is determined to within an arbitrary rotation
about z′. Coordinates x ′ and y ′ of a surface point x ∈ Ŝβ serve as a local surface
parameterization near xi , and so the Hebeker density q(x) on Ŝβ may be approximated
at x ≈ xi as a first-degree polynomial in x ′ and y ′:

q(x) ≈ q(xi) + Ax ′ + By ′. (3.7)

The vector coefficients A and B are found by least-squares fitting of (3.7) to the
values of q(x) in mesh nodes xj directly connected to xi:∑

j∈Ai

(Ax ′
j + By ′

j − �qj )2 → min, �qj = q(xj ) − q(xi), (3.8)

which immediately gives the equations for A and B:

T11 A + T12 B =
∑
j∈Ai

x ′
j�qj , T12 A + T22 B =

∑
j∈Ai

y ′
j�qj , (3.9)

with

T11 =
∑
j∈Ai

(x ′
j )

2, T12 =
∑
j∈Ai

x ′
j y

′
j , T22 =

∑
j∈Ai

(y ′
j )

2. (3.10)

In (3.8)–(3.10), Ai is the set of mesh nodes directly connected to xi (which incudes
at least five, typically six neighbours for the unstructured meshes we are using, see
Zinchenko et al. 1997), and x ′

j =(xj −xi) · e′
1, y

′
j = (xj − xi) · e′

2 are intrinsic coordinates
of the neighbours. Solving (3.9) and returning to the global coordinates, the linear
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approximation (3.7) can be factorized as

q(x) ≈ q(xi) +
∑
j∈Ai

ck,j,i

(
xk − xi

k

)
�qj (3.11)

(assuming summation in k = 1, 2, 3, but no summation in i), where

ck,j,i =
(T22x

′
j − T12y

′
j )e1,k + (T11y

′
j − T12x

′
j )e2,k

T11T22 − (T12)2
(3.12)

and xk , xi
k in (3.11) are global Cartesian coordinates of x and xi , respectively. The

coefficients ck,j,i are independent of q (and of arbitrary rotation about z′) and are
precalculated for all β and all xi ∈ Ŝβ before iterations.

Now, let xi be the mesh node on Ŝβ that is closest to y ∈ S̃α . The integral (3.6) is
regularized as∫

Ŝβ

{
q(x) − q(xi) −

∑
j∈Ai

ck,j,i

(
xk − xi

k

)
[q(xj ) − q(xi)]

}
· τ (r) · n(x) dSx

+
∑
j∈Ai

ck,j,i[q(xj ) − q(xi)] · 3

4π

∫
Ŝβ

[r · n(x)]rk r r
r5

dSx (3.13)

using (2.2). In the first integral (3.13), the near-singularity of the integrand (when y is

close to Ŝβ) is now fully suppressed, and this integral is calculated by the trapezoidal
rule (3.2). The cumbersome part with ck,j,i in parentheses (3.13) does not slow down
iterations, if its contribution to (3.13) is represented (after applying the trapezoidal
rule) as ∑

j∈Ai

ck,j,iΓ k( y, β)[q(xj ) − q(xi)], (3.14)

where the 3 × 3 matrices Γ k( y, β) are independent of q and precalculated before the
iterations at a modest additional expense. An additional third-rank tensor appearing
in (3.13),

Ψ ( y, β) =
3

4π

∫
Ŝβ

[r · n(x)]r r r
r5

dSx, (3.15)

is fully permutable in all three indices and can be also represented as (Appendix A)

Ψk,
,m =
1

8π

{
(δk
∇m + δkm∇
 − R
∇k∇m − Rm∇k∇
)

∫
D̂β

1

r
dVx

+ ∇k∇m

∫
D̂β

ξ


r
dVx + ∇k∇


∫
D̂β

ξm

r
dVx

}
(3.16)

via the integrals over the particle volume D̂β , where, for brevity, ∇k = ∂/∂yk , R = y− x̂c
β

and ξ = x − x̂c
β . The form (3.16) makes it easier to study Ψ analytically for some

shapes. For a spherical particle Ŝβ of radius aβ centred at x̂c
β ,

Ψk,
,m = a3
β

(
a2

β

R2
− 1

)
RkR
Rm

R5
−

a5
β

5R5
(δk
Rm + δkmR
 + δ
mRk). (3.17)

We have also found closed forms for Ψ for prolate and oblate spheroids (Appendix A).
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For the solid–drop single-layer contributon, a simple regularization is used:∫
Ŝβ

q(x) · G(r) dSx =

∫
Ŝβ

[q(x) − q∗] · G(r) dSx + q∗
∫

Ŝβ

G(r) dSx (3.18)

when y ∈ S̃α . Although some tests suggest that a simple choice q∗ = q(xi) (where,

again, xi is the mesh node on Ŝβ nearest to y) would suffice in the present calculations,
we generally prefer a smooth form q∗ = q(x∗

S) (where x∗
S is the surface point on Ŝβ

nearest to y), to avoid noticeable discontinuity for q∗ in dynamical simulations. The
value of q∗ has to be found by interpolation. Since y − x∗

S is approximately parallel
to n(xi), relations (3.11)–(3.12) yield

q∗ = q(xi) +
∑
j∈Ai

ck,j,i

(
yk − xi

k

)
�qj . (3.19)

The additional integral in (3.18), handled analytically, has already appeared in (3.5).

Drop–solid and drop–drop contributions

For the single-layer integrals (2.5), when y lies on a solid, or another drop surface

S̃α �= S̃β , a smooth near-singualrity subtraction is also recommended:∫
S̃β

k(x)n(x) · G(r) dSx =

∫
S̃β

[k(x) − k(x∗
S)]n(x) · G(r) dSx, (3.20)

where x∗
S is the surface point on S̃β closest to y. The expression for k(x∗

S) is similar
to (3.19)

k(x∗
S) = k(xi) +

∑
j∈Ai

cm,j,i

(
ym − xi

m

)
[k(xj ) − k(xi)], (3.21)

with xi being the mesh node on S̃β nearest to y, and Ai its set of neighbours. Here, it
is important to use k(x∗

S) instead of common k(xi) (otherwise, some of our simulations
crash in the subcritial range, when a drop is trapped in a constriction).

Quite different is our technique of near-singularity subtraction for the double-layer
drop contribution:∫

S̃β

w(x) · τ (r) · n(x) dSx =

∫
S̃β

[w(x) − w∗] · τ (r) · n(x) dSx, y /∈ S̃β . (3.22)

The simplest choice w∗ =w(xi) was unsatisfactory in some simulations with contrast
viscosities (e.g. λ= 0.25) in the near-critical range, leading to divergence of iterations
and/or surface overlapping, but the idea of high-order near-singularity subtraction
was not productive either in this case. We found instead that a significant improvement
over the standard choice w∗ = w(xi) in the present simulations is provided by the
variational method of Zinchenko & Davis (2002), which requires the subtracted
quantity w∗ to minimize the Euclidean norm of the discretized double layer (3.22) for
a given y, ∑

xj ∈S̃β

[r · n(xj )�Sj ]
2[r · (w(xj ) − w∗)]2

r8
→ min, r = xj − y, (3.23)
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which gives a linear 3 × 3 system of equations for w∗:[ ∑
xj ∈S̃β

[r · n(xj )�Sj ]
2r r

r8

]
w∗ =

∑
xj ∈S̃β

[r · n(xj )�Sj ]
2[r · w(xj )]r

r8
. (3.24)

Although the scheme (3.24) looks complicated, it can be implemented efficiently: the
subtracted part in the discretized right-hand side integral (3.22) is calculated as DT

times the right-hand side of (3.24), where the matrices

D( y, β) =
3

4π

⎡⎣∑
xj ∈S̃β

[r · n(xj )�Sj ]
2r r

r8

⎤⎦−1 ∑
xj ∈S̃β

r · n(xj )�Sj r r
r5

(3.25)

are precalculated before the iterations for all y and β .
Even though the numerical calculations in the present work were for one drop

squeezing between several solid particles, our experience with purely multidrop
systems (Zinchenko & Davis 2002) suggests that (3.24) is also a recommended choice
for the subtracted quantity w∗ in the case of drop–drop contribution (3.22), should
there be more than one drop interacting with solid obstacles.

The variety of different near-singularity subtraction schemes discussed above should
not be confusing. We have found it impossible to use some unified subtraction
scheme for all types of surface-to-surface boundary-integral contributions in a robust
algorithm. For example, using high-order near-singularity subtraction for solid–solid
interaction instead of (3.5) made the convergence of iterations much slower when
solid particles are (nearly) in contact, without significant accuracy improvement, and
could not be accepted. Moreover, when high-order subtraction was included in the
solid–drop single-layer contributon, instead of (3.18), the algorithm lost the ability to
simulate the trapped steady state of a drop in a constriction and led to a crash at large
times (much larger, though, than in the simulations based on the representation (2.7)–
(2.8) of Power & Miranda 1987). On the other hand, high-order subtraction in the
double-layer solid–drop contribution (3.13) was most crucial for successful simulations
in § 4 and could not be replaced, for example, by the variational technique in the spirit
of (3.22)–(3.24). Overall, we found the choice of suitable desingularization techniques
working in a broad range of conditions to be highly non-trivial in this problem (which
may be due to different behaviour of q(x) and w(x) in near-contact areas), and it is
based on our extensive experimenting rather than on rational logic.

3.2. Additional features of the algorithm

To calculate curvature k(xi) and the normal vector n(xi) in the nodes of an
unstructured mesh of triangles on a drop, we use fourth-order local fitting to the
drop surface in a coordinate system with the z-axis along the normal vector, and
two layers of mesh nodes around xi . Such an algorithm, outlined in Appendix B,
is a simple variation of the best-paraboloid method of Zinchenko et al. (1997) and
was found to describe the dynamics of drop squeezing through tight constrictions
somewhat more accurately in the present calculations. It should be noted, though,
that this algorithm, in general, is less robust than the best-paraboloid method, in
that it is less capable of simulating very elongated drop shapes approaching breakup
(when our fixed topology mesh becomes highly stretched). This difficulty, however,
was irrelevant to the present calculations with compact shapes, as discussed in § 4
in more detail. There are efficient ways of topological mesh restructuring (Cristini
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et al. 1998, 2001) into compact triangles, which could make the high-order curvature
scheme more robust, but we did not try to explore whether such a combination of
the two approaches would be beneficial in breakup simulations.

A traditional method of simple iterations (successive substitutions) is divergent for
the boundary-integral system of equations (2.10)–(2.11). An alternative technique of
biconjugate-gradient iterations is successful, but requires an adjoint operator, which
complicates the code. We have found in the present simulations that, for moderate
viscosity ratios λ, a simpler generalized minimal-residual method GMRES(k) is
competitive. As in multidrop shear-flow simulations (Zinchenko & Davis 2002),
k = 2 was found to be close to optimum. For λ=O(1), the number of iterations to
maintain the residual of the equations (2.10)–(2.11) within 10−5 for all mesh nodes
ranges from 2–4 (when a drop is away from the constriction, or has reached a trapped
state) to 8–10 (when the drop moves vigorously through a tight constriction). Contrast
viscosities (λ= 10) required slightly more iterations. Unlike for pure drop systems, the
case λ= 1 still requires an iterative solution.

For solid surfaces, we used stationary unstructured triangulations, with moderate
adaptation to the constriction region when necessary (§ 4 and Appendix C). For
deformable drops, we started from spherical shapes and initial uniform unstructured
triangulations prepared in a standard way from regular polyhedra by a series
of refinements (Kim & Karilla 1991; Zinchenko & Davis 2004). To avoid a
familiar difficulty with mesh degradation, as a drop moves and deforms, a version
(Zinchenko & Davis 2002, 2003) of ‘passive mesh stabilization’ was used to maintain
the quality of fixed topology surface triangulation by adding a suitable tangential field
on the drop surface. This field is found iteratively at each time step by minimizing
the ‘kinetic mesh energy’ (in the form (A 1) of Zinchenko & Davis 2002 at α =2), to
prevent mesh triangle collapse and the internode distances from becoming irregular
in long-time simulations. This relatively simple, curvature-nonadaptive version is
very robust in the present simulations, where drops experience complex shape
transformations, but remain compact. We expect, though, that for higher capillary
numbers, when the drop develops high curvature upon leaving the constriction,
curvature-adaptive meshing would be required; such adaptation would still be possible
for fixed-topology triangulations (Zinchenko & Davis 2000).

Several thousand triangular elements were typically used on each drop and solid
surface. Drop shapes were updated by the second-order Runge–Kutta scheme. A
stable yet economical time step �t was chosen empirically as

�t = K�t

µe

σ
min

i

{
�xi

ã max[|k1(xi)|, |k2(xi)|]

}
. (3.26)

Here, K�t = O(1) is a non-dimensional numerical factor, the minimum is taken over
all mesh nodes xi on the drop surface, �xi is the minimum distance from xi to its
neighbours on the drops surface, ã is the non-deformed drop radius, and k1, k2 are
the principal curvatures at xi (should there be more than one drop, the minimum
of (3.26) is additionally taken over all drops). The form (3.26) becomes the usual
limitation �t � K�tµe min |�xi |/σ (Rallison 1981) for a spherical drop. For the
present calculations with Ca = 0(1), we found that we could use larger values of
K�t , from 3.5 for λ=0.25 to 7–9 for 1 � λ � 10, than those for Ca � 1 and nearly
spherical drops (Zinchenko & Davis 2005). In principle, when the drop comes close
to solid surfaces (or other drops), there should be an additonal limitation like �t � O

(K�tµe min ρ/σ ), where min ρ is the minimum of internode distances (drop–solid,
drop–drop), but excluding pairs (xi , xj ) for which xj is the nearest node to xi or vice



Boundary-integral study of a drop squeezing through interparticle constrictions 241

versa, as observed recently for Ca � 1 drop interactions (Zinchenko & Davis 2005).
However, in the present calculations with fairly large deformations, such a limitation
was absorbed by (3.26).

Finally, the drop shape was rescaled at each time step about the drop centroid x̃c

to keep the volume constant. This common procedure helped to reduce the long-time
cumulative error, with a negligible effect in the limit of fine triangulations.

4. Numerical results
In the numerical calculations below for a single, freely suspended drop motion past

a group of identical solid particles rigidly held in a uniform flow u∞ = constant,
we used the particle radius â (for spheres) or the major half-axis (for spheroids)
as a characteristic length scale L; the velocity and time scales are |u∞| and L/|u∞|,
respectively. The Hebeker parameter η in the non-dimensionalized equations (2.10)–
(211) was set to 1. The capillary number is defined as

Ca =
µe|u∞|

σ

ã

L
(4.1)

(the inclusion of the drop radius ã is, at least, motivated for ã/L � 1, since |u∞|/L
is the velocity gradient estimate). The drop always started far upstream from the
spherical shape. All the calculations have been performed on single-processor AMD
PCs, with Athlon XP2600+ and XP3000+ CPU.

4.1. Tests

The main calculations were preceded by several tests to validate different parts of the
code. First, we calculated the hydrodynamic force F (related to the integral of the
Hebeker function q(x), e.g. Hebeker 1986) on each of the two solid spheres in near-
contact in the absence of the drop, to compare with exact bispherical-coordinate
solutions of Stimson & Jeffrey (1926) and O’Neill & Majumdar (1970). When the
flow u∞ is along the line-of-centres, the exact values of |F|/(6πµeâ|u∞|) are 0.6566
and 0.6457 for the dimensionless gap of ε = 0.2 and 0.01, respectively; these numbers

agree very well with 0.6562 and 0.6454 by the present code with N̂ = 8640 triangular
elements per surface (non-adaptive). When the flow u∞ is normal to the line-of-
centres, the exact results are 0.7413 and 0.7255 for ε =0.2 and 0.01, respectively, and
are again in excellent agreement with 0.7409 and 0.7251 produced by our code with

N̂ =8640.
In the second series of tests, a head-on approach of a slightly deformable

freely suspended drop to a single stationary solid sphere was considered. The
non-dimensional non-deformed drop radius ã and the initial gap were 0.7 and 0.4,
respectively. The drop velocity U at any instant of time was calculated as the volume-
averaged fluid velocity inside the drop using the Gauss theorem:

U = 〈u〉 =
1

Ṽ

∫
S̃

(u · n)(x − x̃c
) dS, (4.2)

where Ṽ is the drop volume. On the other hand, using the ‘nominal gap’
δ = |x̂c − x̃c| − 1 − ã as the gap between the solid sphere and the non-deformed drop
with the same centroid x̃c

(as for the deformable drop), the drop velocity can be
calculated theoretically from the bispherical-coordinate solution for two spherical
drops (Zinchenko 1983) in the limit when one drop viscosity is infinite. Comparison
between our boundary-integral (solid line) and theoretical (dashed line) results is
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Figure 2. Drop velocity for head-on approach toward a stationary solid sphere for λ= 0.25

and Ca = 5.6 × 10−3. Solid line: boundary-integral solution (Ñ = N̂ = 8640); dashed line:
bispherical-coordinate solution for a spherical drop.

given in figure 2 for λ= 0.25 and Ca = 5.6 × 10−3; the solid line is mesh-independent.
After a short relaxation time t ∼ Ca, excellent agreement with theory is observed
in a wide range of separations, until the nominal gap becomes small and deviations
inevitably occur; a similar successful test was made for λ= 10 and Ca = 2.8 × 10−3.
These Ca � 1 tests are non-trivial in that small O(Ca) shape deviations from spherical
in the boundary-integral solution are divided by Ca to produce an O(1)-effect (after
the initial relaxation time t ∼ Ca); adequate resolution and very small time steps are
required.

Additionally, we checked that, when the solid particles are absent and the uniform
far-field flow is replaced by a shear flow, our large-deformation stationary solutions
for a single drop are consistent with those available elsewhere (e.g. Rallison 1981;
Kennedy, Pozrikidis & Skalak 1994).

4.2. Two-sphere constrictions

Figures 3 and 4 illustrate our simulation for a drop squeezing through a tight
constriction between two solid spheres at λ= 4 and Ca = 0.63. The uniform flow
u∞ and the particle line-of-centres are perpendicular and form a plane π (plane of
drawing in figure 3). Symmetric initial conditions were chosen, so that the drop centre
at t = 0 was in the plane π, at equal distances from both particles, and six units
away from the particle line-of-centres. If the problem is solved exactly for such initial
conditions, the drop centre should remain in the plane π along the bisector to the
particle line-of-centres, and the drop shape should be symmetric about the π-plane.

To preserve symmetry to high accuracy without any forcing, we used Ñ = 8640

triangular elements on the drop and N̂ = 5120 elements on each solid sphere (non-
adaptive meshes, figure 3). The non-deformed drop diameter 2ã = 1.8 is almost four
times larger than the gap ε = 0.5 between the particles, and so squeezing would
require significant deformation and resistance. The snapshots in figure 4 show that
the drop is able to pass the constriction without the loss of symmetry; the drop surface
becomes dimpled by the solid spheres and forms a ‘collar’ around the constriction
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u∞

Figure 3. A schematic for a drop squeezing through a two-sphere constriction at ε = 0.5,

ã = 0.9, λ= 4, Ca = 0.63, with Ñ =8640 triangular elements on the drop and N̂ =5120
elements on each solid sphere. The drop shape and position are shown at t = 10.

in the flow direction until squeezing occurs, and the drop eventually returns to the
spherical shape far downstream. The snapshot of the drop mesh during squeezing
(figure 5, view along the particle line-of-centres) shows that our fixed topology mesh
algorithm is robust in such simulations, where the drop undergoes complex shape
transformations, but remains compact.

To study the effect of drop deformability on the squeezing process, the simulation
in figure 4 was repeated for several different capillary numbers. In figure 6, the non-
dimensional drop velocity U (which is defined and calculated as the volume average
(4.2), with the only component along U∞) is shown vs. time; the most accurate
calculations (for fine triangulations) are represented by solid lines. All curves start
from drop velocity U slightly less than 1, owing to large but finite initial separation.
For Ca =0.63, the drop velocity reaches a minimum of 0.046 in the constriction before
it approaches unity far downstream. For Ca = 0.36, the drop even decelerates about
140 times, but it is still able to pass. For all the pass-through cases, Ca =0.63, 0.45
and 0.36, squeezing occurs in the manner of figure 4 without the loss of symmetry,
and there is the second, local minimum of drop velocity U (t) shortly before the drop
leaves the constriction.

The case Ca = 0.225 is markedly different. The drop velocity U reaches extremely
small values U ∼ 0.0003 by t ∼ 40 (and ∼ 10−6 by t ∼ 60) and is believed to asymptote
to zero at t → ∞. The normal velocities u · n everywhere on the drop surface
also become virtually zero, and the drop reaches a moderately deformed symmetrical
steady shape without being able to pass the constriction. Additional calculations show
that Ca =0.225 is close to critical for squeezing to occur without loss of symmetry.

Figure 7 shows the temporal dynamics of the gap between the drop and solid
surfaces for Ca = 0.225, as this trapped steady state is approached. Without numerical
errors, the drop would be at equal distances from both spheres at any t > 0; in
calculations, however, these gaps were slightly different (typically, by a few per cent
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t = 5 t = 20

t = 30 t = 37

t = 43 t = 52

Figure 4. Snapshots of the drop motion through a two-sphere constriction at ε = 0.5, ã = 0.9,

λ=4, Ca = 0.63, Ñ = 8640, N̂ = 5120; a perspective view. The calculation required 1000 time
steps between t = 20 and t = 43.

in close contact), and figure 7 represents the average of the two vs. time. Each gap
was rigorously calculated as a distance between the drop mesh polyhedron (with flat
triangulation) and a particle centre minus one. Both crude (dashed line) and more
accurate (solid line) resolutions demonstrate that a steady state is closely reached
by t ∼ 60, with a stationary gap ∼0.02. Unlike for the gap, the global trapped
configuration and the global steady-state drop shape were found to be practically
mesh-independent. We did not attempt to extend the calculations in figure 7 to even
larger times, since this stationary regime, with the symmetrical drop shape, is not
expected to be asymptotically stable at t → ∞ to initial conditions. In contrast, for
essentially supercritical Ca, slight perturbation of the initial conditions does not have
an appreciable effect on the squeezing process. For example, at Ca = 0.63, the shift
in the initial position of the drop centre off the π-plane by 0.005 resulted in some
subsequent loss of symmetry, with the deviation of the drop centroid from the π-plane
reaching a maximum of 0.13 during squeezing. However, the whole trajectory for the
drop velocity U (t) along the flow direction was graphically indistinguishable from
that shown in figure 6 at Ca = 0.63.
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Figure 5. Snapshot of the drop mesh at t =37 during its motion through the two-sphere

constriction (ε = 0.5, ã = 0.9, λ= 4, Ca = 0.63, Ñ = 8640, N̂ = 5120).
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Figure 6. Drop velocity for its motion through the two-sphere constriction (ε = 0.5, ã = 0.9,

λ= 4). Solid lines 1: Ca =0.63, Ñ = 8640, N̂ = 5120; 2: Ca = 0.45, Ñ =8640, N̂ = 5120;

3: Ca = 0.36, Ñ = 11 520, N̂ = 8640; 4: Ca = 0.225, Ñ = 11 520, N̂ = 8640. Short-dashed

(Ca = 0.45, Ñ = 5120, N̂ = 3840) and long-dashed (Ca = 0.225, Ñ = 8640, N̂ = 5120) lines
show the triangulation effect, which is negligible for U � 0.005.

Presumably, there is a qualitative analogy (M. Loewenberg, personal communica-
tion) between the trapped steady state found here for Ca = 0.225 and the axisym-
metrical stationary solutions for a deformable drop near a plane wall and for two
drops pressed together by a compressional flow (Nemer 2003; Nemer et al. 2004).
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Figure 7. The temporal dynamics of the drop-solid spacing for Ca = 0.225, as the trapped
steady state is approached for a two-sphere constriction (ε =0.5, ã = 0.9, λ= 4). Solid line:

Ñ = 11 520, N̂ =8640; dashed line: Ñ = 8640, N̂ = 5120.

In all the cases, the steady state with non-zero gap thickness is due to the local
pumping flow along the drop surface, which drives fluid into the gap(s) to balance
the squeezing effect of the outer flow. Nemer (2003) and Nemer et al. (2004) found
analytically that their stationary gap has a strong scaling Ca3, as Ca → 0. An extension
of their theory to the present three-dimensional problem should be possible at Ca � 1,
provided that the asymptotics of the tangential stress on the spherical drop surface in
near-contact regions is determined; the details may be very non-trivial, though. Even
harder would be to obtain the scaling information from deformable drop simulations,
owing to extreme difficulties of three-dimensional boundary-integral calculations at
Ca � 1 with close interactions (Zinchenko & Davis 2005). We explored instead, at
finite deformations, how the surface clearance between the drop and solid particles
in the squeezing process is affected by the capillary number in the supercritical range
Ca >Cacrit for symmetric initial conditions. The effect is surprisingly weak (figure 8);
even at a substantially supercritical value of Ca = 0.63, the drop has to nearly coat
the solid surfaces, with very small clearance, to be able to pass the tight constriction.
The second minimum in the gap, observed just before the drop leaves the constriction,
is reminiscent of a similar finding, from both numerical calculations and asymptotic
lubrication theory, for near-contact motion of two drops at Ca � 1 (Zinchenko &
Davis 2005).

4.3. Drop squeezing between two disks

To check the capabilities of our algorithm for non-spherical particles and demonstrate
usefulness of the formulae given in Appendix A, we simulated drop squeezing between
two parallel disks. Each solid particle is now an oblate spheroid with major and minor
axes of 1 and 0.4, respectively; the minor axis is along the line-of-centres. Symmetric
initial conditions were chosen again, with the drop centre in the π-plane, at equal
distances from both particles and six units away from the particle line-of-centres.
The constriction is tight in that the non-deformed drop diameter 2ã is three times
larger than the gap ε = 0.5 between the spheroids. The snapshots of the simulation
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Figure 8. The drop–solid spacing for supercritical capillary numbers and a two-sphere

constriction (ε = 0.5, ã = 0.9, λ= 4). Long-dashed line: Ca = 0.63, Ñ = 8640, N̂ = 5120; Solid

line: Ca = 0.45, Ñ = 8640, N̂ = 5120; Short-dashed line: Ca = 0.36, Ñ = 11 520, N̂ = 8640.

with λ= 1, Ca = 0.4 and non-adaptive meshes (medium resolution) are shown in
figure 9. The drop, again, passes through the constriction in a symmetric fashion,
with a heart-like shape; the drop velocity U slows down up to 60 times during
squeezing. Upon leaving the constriction, the drop develops a wedge-like shape
(figure 9 at t = 68.6), with the edge (the region of curvature k ≈ 4.5ã−1) along the
particle line-of-centres, but it slowly returns to the spherical shape far downstream.
Comparison of the low-resolution (dashed line) and medium-resolution (solid line)
results for the drop velocity (figure 10a) shows very good accuracy in the entire
time range; presumably, excellent convergence is achieved because the conditions are
not very close to critical in this case. The results for the gap between the drop and
solids are also reasonably convergent in the entire near-contact range, the closest
separation being 0.012 (figure 10b). The success of these simulations, as of those
in § 4.2, is crucially dependent on the novel, high-order near-singularity subtraction
in the double-layer solid–drop contribution (3.13). When the high-order terms were
disabled (by setting ck,j,i = 0 in (3.13)), both low-resolution (Ñ =5120, N̂ = 3840)

and medium-resolution (Ñ =8640, N̂ = 5120) runs faltered very early, at t ≈ 20–24,
with drop–solid overlapping, when the drop just enters the constriction.

4.4. Three-sphere constriction

Here, we discuss simulations of drop squeezing between three rigidly-held solid
spheres. We first consider cases where the spheres are separated, and then provide
additional results for the spheres essentially in contact. In all cases, the particles of unit
radius form an equilateral triangle, and the uniform flow u∞ is normal to the plane of
particle centers. The drop centre is placed initially upstream six units away from this
plane, and aimed at the constriction centre (figure 11). For a small-to-moderate
spacing ε between solid particles, we found it advantageous to use particle meshing
moderately adaptive to the distance from the constriction centre (not to near-contact
areas between solids). A simple algorithm for such adaptation is given in Appendix C.
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Figure 9. Snapshots of the drop motion between two parallel disks (ε = 0.5, ã = 0.75, λ= 1,

Ca = 0.4, Ñ = 8640, N̂ =5120); a perspective view.

Figure 12 presents snapshots of the simulation for ε = 0.25, ã = 0.6, λ= 4, Ca = 1.3,
and medium resolution. The constriction is tight, with the non-deformed drop diameter
2ã being about twice as large as the inner diameter of the hole. The drop squeezes
through the hole extremely slowly, decelerating up to 500 times, but it is still able to
pass through. Figure 13 shows the drop meshing at t = 278, when the drop is well
in the throat; the characteristic dimples formed by the solid particles and high mesh
quality are demonstrated. As the drop leaves the constriction, it starts elongating
very fast in the flow of extensional type behind the spheres; for this reason, we were
unable, with the present version of the code, to track the process beyond t = 345. In
part, this shortcoming is due to using the high-order curvature algorithm of Appendix
B. With the best paraboloid-spline method (Zinchenko & Davis 2000) instead, the
calculation could be made further (at some modest expense of accuracy, however,
for the main stage of drop squeezing), still showing drop stretching to length 5.94ã
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Figure 10. (a) Drop velocity and (b) drop-solid spacing for the motion between two parallel

disks (ε =0.5, ã = 0.75, λ= 1, Ca = 0.4). Solid lines: Ñ = 8640, N̂ = 5120; Dashed lines:

Ñ = 5120, N̂ = 3840.

at t = 362, when the drop surface is three units away from the solids. To make such
calculations more robust for higher Ca and analyse possible breakup, it would be
imperative to either include efficient algorithms of topological mesh restructuring into
compact elements (Cristini et al. 1998, 2001), or use the curvatureless form of the
boundary integral over the drop surface (Zinchenko et al. 1999) with fixed-topology
meshes. Such potential improvements, however, are outside the scope of the present
work, and they may be not even relevant to our future simulations of emulsion
flow through a granular material where particles necessarily form a dense packing.
Indeed, there will be other solid particles impeding excessive drop elongation as soon
as it leaves a constriction; for drops of compact shapes, the present fixed-topology
mesh algorithm is quite robust. High-aspect-ratio simulations could be more relevant,
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Figure 11. A schematic for drop squeezing between three non-touching solid spheres at

ε = 0.25, ã = 0.6; the mesh of N̂ = 5120 elements on each solid is adapted to the constriction.
The projection of the non-deformed drop shape (far upstream) onto the plane of particle
centers is shown by the dashed circle.

however, when the non-deformed drop diameter is appreciably smaller than the pore
size, if there is a sufficient velocity gradient to stretch/break drops.

The simulation in figure 12 was repeated for several different capillary numbers.
In figure 14, the drop velocity U is plotted vs. time, the most accurate results (for
high resolution) being represented by solid lines. At Ca = 1.5, we could only track
the simulation to t ≈ 306 with the high-order curvature scheme, owing to fast drop
stretching downstream. By this time, however, the drop is already well out of the
constriction, the gap from solid being 0.30. For Ca =1.1, on the other hand, the
drop returned to the spherical shape far downstream; at this still supercritical Ca

(for squeezing to occur), a dramatic drop deceleration of almost 1000 times in the
constriction is observed. The case Ca =0.9 is clearly subcritical: the drop velocity U

reaches 10−4 by t = 200 (and 5 × 10−6 by t = 600). The trapped steady state for Ca = 0.9
is shown in figure 15, with all normal velocities u · n on the drop surface virtually zero;
the drop steady shape is more deformed than in the case of a two-sphere constriction.
Figure 16 presents temporal dynamics for the gap between the drop and solids in
the Ca = 0.9 simulations for high (solid line), moderate (short-dashed line) and low
(long-dashed line) resolutions. All runs achieve a true steady state, with the stationary
gap of 0.018, 0.015 and 0.013 for low, medium and high resolutions, respectively;
the global drop shape in the steady state and trapped configuration (figure 15) were
found to be unaffected by these triangulations. Unlike for a two-particle constriction
(§ 4.2), the steady state in figures 15 and 16 (with all three gaps between the drop and
solids being equal) is asymptotically stable at t → ∞, which was verified by repeating
these simulations with slightly asymmetric initial conditions.
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Figure 12. Snapshots of the drop motion between three non-touching spheres for ε = 0.25,

ã = 0.6, λ= 4, Ca = 1.3, Ñ =8640 and N̂ = 5120; a perspective view.

We view the ability of our boundary-integral techniques to maintain such a trapped
state virtually indefinitely, without a numerical crash, as an essential feature for
the success of future simulations of multidrop motion through a random granular
material, with many solid particles rigidly held in a periodix box. In such simulations,
some drops will move through constrictions, while others, simultaneously, will be
trapped at the pore throats, and, for adequate averaging, it will be imperative to be
able to maintain the solution for a long time. In this case, ‘trapped’ does not mean
‘stationary’, since the exterior of a trapped drop will continue unsteady interaction with
the other drops and solids. We found, however, that this vital ability of the algorithm
to maintain a trapped state is highly non-trivial and could not be achieved without
combining our new desingularization techniques of § 3.1 with Hebeker representation
(2.9). With the latter replaced by the Power–Miranda representation (2.7), the Ca = 0.9

runs faltered early, with drop-solid overlapping; the low-resolution run (Ñ = 5120,
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Figure 13. Snapshot of the drop meshing at t = 278 for squeezing between three non-touching

spheres at ε = 0.25, ã = 0.6, λ= 4, Ca = 1.3, Ñ =8640 and N̂ = 5120; the view direction is
perpendicular to u∞ and to the line-of-centres of two of the spheres.
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Figure 14. Drop velocity for the motion between three non-touching spheres (ε = 0.25, ã = 0.6,

λ=4). Solid lines 1: Ca = 1.5; 2: Ca = 1.3; 3: Ca = 1.1; 4: Ca = 0.9, all for Ñ =11 520,

N̂ = 8640. Long-dashed (Ca = 1.5), medium-dashed (Ca = 1.3) and short-dashed (Ca =0.9)

lines are for Ñ = 8640, N̂ = 5120. For essentially supercritical Ca, the triangulation effect
is negligible; for Ca = 0.9, the drop velocity is practically mesh-independent until it reaches
∼ 0.002.
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(a)

(b) (c)

Figure 15. (a) A trapped configuration and (b, c) drop steady-state shape between three non
touching spheres for ε = 0.25, ã = 0.6, λ= 4, Ca = 0.9; (a) and (b) are front views along u∞
(with the flow pushing the drop from behind); (c) is the side view perpendicular to u∞ and to
the line-of-centres of two of the particles; (b) and (c) use the same scale.
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Figure 16. The temporal dynamics of the drop-solid spacing for subcritical Ca = 0.9 in a three-

sphere constriction (ε = 0.25, ã = 0.6, λ= 4). Solid line: Ñ = 11 520, N̂ = 8640; short-dashed

line: Ñ = 8640, N̂ =5120; long-dashed line: Ñ = 5120, N̂ = 3840.
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Figure 17. Drop–solid spacing for supercritical Ca in a three-sphere constriction (ε = 0.25,

ã = 0.6, λ= 4, Ñ = 11 520, N̂ = 8640).

N̂ = 3840) crashed at t = 157, the medium-resolution run (Ñ = 8640, N̂ = 5120)
could survive only until t =167. For comparison, it takes the drop about twice as long
to pass the constriction, even for an essentially supercritical Ca = 1.5 (see figure 14).
In contrast, with the Hebeker representation, all our runs in igure 16 proceeded
to t = 1600 and were simply stopped without a sign of failure. Instead of more
sophisticated numerical tools offered in the present work, it would seem natural
to introduce artificial repulsion forces between the drop and solids to prevent the
numerical crash, but so far, we have found this idea to fail: to have a negligible global
effect, these forces must be small and they do not help to extend the lifetime of the
solution substantially.

It was also interesting to explore the capabilities of the first-kind integral equation
in our problem (by disabling the double-layer term in the Hebeker representation (2.9)
and forcing the density q(x) to be orthogonal to the normal vector n(x), to purge the
corresponding eigensolutions), since the disadvantages of this generally ill-conditioned
tool are sometimes disputed in the literature. It was observed in the Ca = 1.3 runs
that the number of iterations per time step becomes reasonable (of the order of ten)
after a short initial time, thus allowing simulations to proceed despite ill-conditioning,
but only until the drop comes close to solids. In the latter case, the number of
iterations grew catastrophically, to O(100) and more, especially for larger N̂, so that
high triangulations on solids could not even be attempted. Since the difficulty arises
from drop–solid interactions, it could not be resolved by preconditioning on the level
of single particles; non-iterative techniques are not prospective at all in this, and

especially future large-scale problems. The run Ñ =8640, N̂ = 1280 crashed very

early at t =87 with drop–solid overlapping; the run Ñ =8640, N̂ =2160 succeeded
only to t = 93. The first-kind integral equation is far from a suitable approach in the
present problem even for Ca > Cacrit , let alone for the more difficult subcritical case.

To complement the results in figure 16, we have also calculated the dynamics of
the drop–solid clearance for Ca >Ccrit . The high-resolution results in figure 17 reveal,
again, that the gap is a surprisingly weak function of Ca in the supercritical range.
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Figure 18. The effect of λ on (a) the drop velocity and (b) drop-solid spacing for squeezing

between three non-touching spheres (ε = 0.25, ã = 0.6, Ca = 1.3). Solid lines 1–4 are for Ñ =

11 520, N̂ = 8640. Short-dashed (λ= 0.25) and long-dashed (λ= 10) lines in (a) are for medium

resolution Ñ = 8640, N̂ = 5120.

Even for an essentially supercritical Ca =1.5, the drop has to nearly coat the solid
surfaces, with the gap less than ≈ 0.015, to be able to squeeze through the hole.

Figures 18(a, b) demonstrate the effect of the drop-to-medium viscosity ratio λ on
the squeezing process at Ca = 1.3. Decreasing λ from 10 to 0.25 shortens the exit time
(roughly, the time after which both the drop velocity and drop–solid spacing start
to increase sharply) about 2.4 times, obviously due to reduced lubrication. The drop-
solid spacing during squeezing is also smaller for λ= 0.25, reaching 0.006 (figure 18b).
Since λ=0.25 is away from critical, the global triangulation effect is very weak for
this λ (cf. short-dashed and solid lines in figure 18a), and the exit time is predicted
accurately (on the other hand, the small gaps for λ=0.25 did not allow the low-
resolution run Ñ = 5120, N̂ =3840 to succeed at all beyond t = 102). For λ= 10,
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Figure 19. A schematic for drop squeezing between three nearly touching solid spheres at

ε = 0.01, ã = 0.3; the constriction-adaptive mesh on solids with N̂ = 5120 and the projection
of the initial non-deformed drop shape (dashed circle) on the plane of particle centers are
shown; the drop centre is initially six units away from this plane.

the triangulation effect is the strongest (cf. long-dashed and solid lines in figure 18a),
but still acceptable; the exit times for high and medium resolutions differ by 4 %.

Finally, we carried out a more difficult series of simulations for drop squeezing
between three (nearly) touching solid spheres, which is most relevant to emulsion flow
through a packed granular material. The gap ε = 0.01 between solid spheres is made
non-zero just to alleviate calculation difficulties due to a touching singularity, without
a significant effect on the squeezing process. The non-deformed drop radius is now
ã =0.3, which is still about twice as large as the inner radius of the constriction.
The stationary adaptive meshes on solids (Appendix C) are quite non-uniform, the
maximum-to-minimum mesh edge ratio being about 5 (figure 19). The snapshots
of drop squeezing for λ= 4, Ca = 1.2 and high resolution are shown in figure 20.
Figure 21(a) presents the drop velocity U (t) for λ= 4 and different capillary numbers.
For Ca = 2, fast drop stretching is observed far downstream, presumably leading to
breakup, while for Ca = 1.2 and 1.05, the drop slowly returns to spherical shape
after passing through the constriction. The case Ca =1 is obviously near-critical:
the drop velocity decelerates to ≈ 10−4 by t ≈ 600 before starting to recover; it takes
the drop a long time, t ≈ 1300, to squeeze through (not shown). Figure 21(b) shows the
dynamics of the drop–solid surface clearance for supercritical Ca; at Ca = 1.05–1.2,
the gap remains about 0.008–0.009 for the entire squeezing process. The temporal
dynamics of drop motion through the constriction for near-critical conditions is
inevitably sensitive to triangulations. The critical capillary number, nevertheless, can
be determined with acceptable accuracy. Figure 21(a) suggests Cacrit ≈ 1 for high

resolution; for medium resolution (Ñ = 8640, N̂ = 5120), we found it to be between
1.1 (when U (t) reaches 2 × 10−5 by t =2000) and 1.15.
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Figure 20. Snapshots of the drop motion between three nearly-touching spheres for ε = 0.01,

ã = 0.3, λ= 4, Ca = 1.2, Ñ = 11 520, N̂ =8640; a perspective view.

In addition to using the Power–Miranda representation (2.7) instead of the Hebeker
representation, another modification to the code we have attempted was to use the
areas of geodesic triangles on solids instead of flat triangles in (3.2). Both modifications
generally improve the accuracy for Ca >Cacrit , but, very unfortunately, they make the
code fail early for subcritical conditions. The present version of the algorithm for drop
squeezing through interparticle constrictions described in § § 2–3 is recommended as
the most balanced approach, which has an acceptable (typically, good) accuracy for
Ca >Cacrit and does not lose robustness in the subcritical range.

5. Conclusions
A novel three-dimensional boundary-integral algorithm has been developed to

study, for the first time, squeezing of a deformable drop at low Reynolds number
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Figure 21. (a) The drop velocity and (b) drop–solid spacing for squeezing between three nearly

touching spheres (ε = 0.01, ã = 0.3, λ= 4). Medium resolution (Ñ = 8640, N̂ = 5120) for

Ca = 2, high resolution (Ñ = 11 520, Ñ = 8640) for other Ca.

through a tight constriction formed by several solid particles rigidly held in space.
The drop is freely suspended and driven by a flow which is uniform away from
the solid obstacles. This problem serves as a prototype of interactions that would
occur for emulsion flow through a random granular material; it is most interesting
to determine when (and how fast) the drop can squeeze through, and when it will be
trapped in the throat. The study of this prototype problem not only allowed us to
clarify the salient features of the emulsion filtration process, but also to develop and
test numerical tools that will be suitable in future, much more complex simulations
of multidrop motion past a random array of solid obstacles. Realistic emulsion flow
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simulations would require periodic boundaries for determining the pressure gradient–
flow rate relationship. However, we have chosen here to consider solid particles in
an unbounded medium as the first step, to concentrate on principal features of the
squeezing mechanism and drop–solid close interaction, and on the related numerical
issues not distracted by the details of the periodic boundary implementation. Although
the present problem is relatively small-scale (one drop interacting with two or three
solid particles), the big challenge for tight constrictions (with the inner diameter several
times smaller than the non-deformed drop diameter), and especially for near-critical
conditions, is that the drop moves with high resistance and very small clearance,
nearly coating the solid obstacles; the subcritical case, when the drop is trapped, is
even harder to simulate.

Compared to drop–drop interactions at finite deformations (Loewenberg & Hinch
1996, 1997; Zinchenko et al. 1997, 1999; Zinchenko & Davis 2000, 2002, 2003;
Bazhlekov et al. 2004), the solution for drop–solid interactions is much more
lubrication sensitive, and has required advanced numerical techniques to succeed.
Our algorithm is based on Hebeker representation for solid–particle contributions
(as a proportional combination of single- and double-layer potentials) and new
desingularization methods for boundary integrals. The most crucial and promising
advance is the high-order near-singularity subtraction in the solid–drop double-
layer contribution that we developed; without this element, none of the simulations
could succeed. The algorithm also features fixed-topology drop surface triangulations
maintained by ‘passive mesh stabilization’. The resulting system of second-kind
integral equations for the Hebeker density on the solid surfaces and fluid velocity on
the drop interface is not suitable for traditional solution by ‘successive substitutions’,
but we have found alternative iterative schemes to succeed. The current version
of the code is for spherical and spheroidal (oblate and prolate) solid particles,
but generalization to other shapes (e.g. three-dimensional ellipsoids or general
axisymmetrical shapes in a three-dimensional configuration) is possible. Even with
new numerical tools, the calculations are demanding, requiring 5000–10 000 boundary
elements per surface for robustness/accuracy, and typically a few thousand time steps
for each run.

Using this algorithm, the drop squeezing between (i) two close spheres and
(ii) two parallel disks, and (iii) through the hole between three close spheres forming
an equilateral triangle (including the case of very close contact) was simulated for
arbitrary viscosity ratios λ. For a two-particle constriction, the drop squeezes in an
interesting fashion, with ‘collar’ formation for Ca >Cacrit , and is trapped (wedged)
for Ca <Cacrit , but the trapped steady state is not asymptotically stable at t → ∞.
In contrast, for a three-sphere constriction, the trapped state (for Ca <Cacrit ) is
asymptotically stable. The effect of the constriction type, capillary number and
viscosity ratio λ on the drop velocity in the throat, exit time from the constriction, and
the drop–solid spacing is explored in detail. Calculations are presented in a challenging
range of parameter values, with initial (non-deformed) drop diameter much larger
than the inner constriction diameter, and conditions not far from critical; in some
simulations, the drop decelerates up to 103–104 times in the throat, but is still able
to pass through. In all cases, the drop–solid surface clearance during squeezing is
0.6 %–2 % of the particle radius (or major half-axis), and is a surprisingly weak
function of the capillary number; even for essentially supercritical Ca, the drop has
to nearly coat the solid surfaces with small clearance, to be able to squeeze through
a tight constriction. For a fixed ratio of the drop non-deformed diameter to the
inner constriction diameter, the critical capillary number is only weakly sensitive to
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solid–solid spacing in a three-sphere constriction. Increasing λ from 0.25 to 10 has a
moderate effect to delay the exit time, and to increase the drop–solid spacing during
squeezing, owing to higher lubrication. The numerical convergence is good, except for
conditions very close to critical where the temporal dynamics is inevitably sensitive
to triangulations. Despite this difficulty, the critical capillary numbers (for squeezing
to occur) are predicted reliably.

Presumably, there is a qualitative analogy between the trapped steady states found
here for two-sphere and three-sphere constrictions, and the stationary axisymmetrical
solutions for a deformable drop near a plane wall and for two drops pressed together
by a compressional flow (Nemer 2003; Nemer et al. 2004). In all the cases, the steady
state with small but non-zero gap thickness is due to the local pumping flow along
the drop surface which drives the fluid into the gap(s) to balance the squeezing effect
of the outer flow. Nemer et al. (2004) showed, however, that for gravity-induced
head-on approach of two unequal drops, pumping acts in the opposite direction and
leads to exponential film drainage to arbitrarily small thickness. In this connection, it
would be very interesting in future work to study the effects of gravitational forcing
on drop squeezing through interparticle constrictions and especially on the trapping
mechanism.

The ability of our three-dimensional algorithm to maintain a trapped state virtually
indefinitely without a numerical crash (at least, for conditions not too close to critical)
was found to be highly non-trivial and could not be achieved without combining our
new desingularization tools with the Hebeker representation. This feature is expected
to be very important for the success of future simulations of multidrop motion
through a random packed granular material, with many solid particles rigidly held in
a periodic box. Indeed, in such simulations, some drops will move through interparticle
constrictictions, while others, simultaneously, will be trapped at the pore throats and,
for adequate averaging, it will be imperative to be able to maintain the solution for
long times. In future work, we hope to address such very challenging simulations by
combining the present boundary-integral tools with efficient multipole acceleration
techniques (Zinchenko & Davis 2000, 2002, 2003), methods for simulating granular
microstructures (Zinchenko 1994, 1998), and parallel programming. An appropriate
choice between the ‘constant flow rate’ and ‘constant pressure gradient’ formulations
may be an additional issue in such simulations and is not obvious a priori. For drop
motion in periodically constricted tubes, the distinction between the two formulations
is analysed by Graham & Higdon (2000b).

This work was supported by NASA grant NNCO5GA55G, and by grant 40430-AC
from the Petroleum Research Fund of the American Chemical Society.

Appendix A. Analytical calculation of singular and near-singular integrals over
a solid particle

General formulae. Using the Gauss theorem, we have for an arbitrarily shaped

particle Ŝβ and y outside Ŝβ:∫
Ŝβ

(
δij

r
+

rirj

r3

)
dSx = (δij − Ri∇j )

∫
Ŝβ

dSx

r
+ ∇j

∫
Ŝβ

ξi

r
dSx, (A 1)

with ∇j = ∂/∂yj , ξ = x − x̂c
β , and R = y − x̂c

β , which reduces the calculation of the
Green function integrals (3.4) to surface Newtonian potentials with constant and
linear densities.
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To prove (3.16) for an arbitrary shape, we again use the Gauss theorem

Ψk,
,m =

∫
D̂β

τk,
,m(r) dVx =

∫
D̂β

[
−pkδ
m +

∂Gk


∂xm

+
∂Gkm

∂x


]
dVx, (A 2)

where pk = (4π)−1∂(r−1)/∂xk is the fundamental pressure for the Green function (2.2).
Note that ∫

D̂β

∂Gk


∂xm

dVx =
1

8π
∇m

∫
D̂β

[
δk


r
+ (ξ
 − R
)∇k

(
1

r

)]
dVx . (A 3)

Substituting (A 3) and a similar relation for ∂Gkm/∂x
 into (A 2) yields (3.16), after
some algebra.

Spherical particle. In this case, the homogeneous Newtonian potentials are standard:∫
Ŝβ

dSx

r
=

4πa2
β

R
,

∫
D̂β

dVx

r
=

4

3

πa3
β

R
(R � aβ). (A 4)

For a linear density ξ , it is easy to derive∫
D̂β

ξ

r
dSx = 4

3
πa4

β

R
R3

,

∫
D̂β

ξ

r
dVx = 4

15
πa5

β

R
R3

. (A 5)

Substituting (A 4)–(A 5) into (A 1) and (3.16), yields (3.4) and (3.17) after some
straightforward operations.

Prolate spheroid. Let (ρ, z) be cylindrical coordinates with the origin at the particle
centre and the z-axis along the particle axis of symmetry. The prolate spheroidal
coordinates σ , τ are introduced as (Korn & Korn 1968)

ρ = c(σ 2 − 1)1/2(1 − τ 2)1/2, z = cστ, σ > 1, − 1 � τ � 1. (A 6)

A given particle Ŝβ becomes a coordinate surface σ = σ0 = const, if σo = p/(p2 − 1)1/2

and c = (a2 − b2)1/2, where a, b are half-axes (a >b), and p = a/b is the aspect ratio.
To expand the surface potentials (A 1) in spheroidal harmonics, we start from the

relation(
σ 2

o − τ 2
)1/2

= σo

[
1 −

∞∑
n=0

P2n(τ )

∞∑
k=max(1,n)

(2k − 3)!! (2k − 1)!! 2n−k(4n + 1)

σ 2k
o (k − n)!(2k + 2n + 1)!!

]
, (A 7)

where Pm(τ ) is a standard Legendre polynomial of degree m. Equation (A 7) can be
briefly written as (

σ 2
o − τ 2

)1/2
=

∞∑
n=0

KnP2n(τ ), (A 8)

and allows us to compute the coefficients Kn. Based on (A 8), it can be shown that

for y outside Ŝβ∫
Ŝβ

dSx

r
= 4πc

(
σ 2

o − 1
)1/2

∞∑
n=0

KnB2n(σo)D2n(σ )P2n(τ ),

∫
Ŝβ

ξ

r
dSx =

∑
n=1,3,...

FnDn(σ )Pn(τ )d + [R − (R · d)d]
∑

n=1,3,...

EnD′
n(σ )P ′

n(τ ), (A 9)
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with

E2n+1 =
4πc

(
σ 2

o − 1
)3/2 B′

2n+1(σo)

(2n + 1)(2n + 2)

[
Kn+1

4n + 5
− Kn

4n + 1

]
,

F2n+1 = 4πc2σo

(
σ 2

o − 1
)1/2 B2n+1(σo)

[
2n + 1

4n + 1
Kn +

2n + 2

4n + 5
Kn+1

]
. (A 10)

Here, d is the unit director of the particle (z) axis, Bn(σ ) is simply Pn(σ ), defined in
the range σ > 1, and Dn(σ ) is the Legendre function of the second kind

Dn(σ ) =
1

2

∫ 1

−1

Pn(t) dt

σ − t
=

∞∑
k=0

2n+1(2k − 1)!!

(2k + 2n + 1)!!

(n + k)!

k!(σ +
√

σ 2 − 1)n+1+2k
. (A 11)

Substituting the exterior potentials (A 9) into (A 1), the infinite sums are differentiated
as compound functions of y, with σ = (R1 + R2)/(2c) and τ =(R2 − R1)/(2c) taken
into account, where R1 and R2 are the distances from y to the spheriod foci. The

convergence is fast, even in the most unfavourable case y ∈ Ŝβ (σ = σo), at least
for moderate aspect ratios (we tested a/b = 2.5), so 20–30 terms in each sum (A 9)
suffice for high accuracy. Fast and stable calculations of Dn(σ ) and Bn(σ ) at large n

are based on the Thomas algorithm for tridiagonal systems via recurrent relations;
derivatives are calculated by additional recurrent relations in the order of ascending n.

Calculation of the the volume potentials in (3.16) is simpler, since no infinite
expansions are involved:∫

D̂β

ξ dVx

r
= [f1D1(σ)P1(τ )+f3D3(σ)P3(τ )]d + [e1D′

1(σ) + e3D′
3(σ)P

′
3(σ)][R − (R · d)d],

∫
D̂β

1

r
dVx = 4

3
πc2σo

(
σ 2

o − 1
)
[Do(σ )Po − D2(σ )P2(τ )] , (A 12)

where

e1 = − 2
5
πc2σo

(
σ 2

o − 1
)2

, e3 =
π

15
c2σo

(
σ 2

o − 1
)2

,

f1 = 4
5
πc3σ 3

o

(
σ 2

o − 1
)
, f3 = −f1.

(A 13)

The simplest way of deriving (A 9)–(A 10), (A 12)–(A 13) is based on the jump
properties of the Newtonian surface and volume potentials, and on the Wronskian
form (Morse & Feshbach 1953) for Legendre functions; details are available upon
request from the authors. Equation (A 12) is equivalent to that derived in the classical
potential theory (MacMillan 1930).

Oblate spheroids. In this case, the first equation (A 6) is replaced by ρ = c(1 + σ 2)1/2

(1 − τ 2)1/2, and the spheroidal coordinate σ is in the range σ � 0. The surface Ŝβ

becomes a coordinate surface σ = σo = const, if σo =(p2 − 1)− 1/2 and c =(a2 − b2)1/2,
where p = a/b > 1 is the aspect ratio. The generating expansions (A 7)–(A 8) are
replaced by (

σ 2
o + τ 2

)1/2
=

∞∑
n=0

KnP2n(τ )

=
(
σ 2

o + 1
)1/2

[
1 −

∞∑
n=0

P2n(τ )

∞∑
k=max(1,n)

(2k − 3)!!(4n + 1)( − 1)nk!(2n − 1)!!(
σ 2

o + 1
)k

(k − n)!n!(2k + 2n + 1)!!

]
. (A 14)
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Instead of Dn and Bn, we introduce real functions

On(σ ) = in+1Dn(iσ ) =

∞∑
k=0

2n+1(2k − 1)!!( − 1)k(n + k)!

(2k + 2n + 1)!! k!(σ +
√

σ 2 + 1)n+1+2k
, (A 15)

and Wn(σ ) = ( − i)nPn(iσ ). With the coefficients Kn now determined from (A 14),
all the relations (A 9)–(A 10), (A 12) hold for the oblate spheroid case, if Dn(Bn) is
replaced by On(Wn), and σ 2

o − 1 replaced by σ 2
o + 1, except that there should be a

plus sign in the square brackets of (A 12). Equations (A 13) are replaced by

e1 = − 2
5
πc2σo

(
σ 2

o + 1
)2

, e3 = − π

15
c2σo

(
σ 2

o + 1
)2

,

f1 = 4
5
πc3σ 3

o

(
σ 2

o + 1
)
, f3 = f1.

}
(A 16)

The coordinates σ , τ are now given by

σ 2 =
1

2

⎧⎨⎩R2

c2
− 1 +

[(
R2

c2
− 1

)2

+
4(R · d)

c2

2
]1/2

⎫⎬⎭ , τ =
R · d
cσ

, (A 17)

which are also used to differentiate the external potentials (A 9) and (A 12) as
compound functions of y. Fast and stable calculations of On(σ ) and Wn(σ ) and their
derivatives at large n are necessarily different from those for Dn(σ ) and Bn(σ ). They
are now based on recurrent relations for Wn(σ ) in ascending order, and for On(σ ) in
descending order of n.

Appendix B. High-order curvature and normal vector calculations
Let no(xi) be a sufficiently good approximation to n(xi), and (x ′, y ′, z′) be local

(intrinsic) Cartesian coordinates centred at xi and with the z′-axis along no(xi). In
these coordinates, the drop surface near xi is approximated as

z′ ≈ R4(x
′, y ′) = Ax ′ +By ′ + Cx ′2 + Dx ′y ′ + Ey ′2

+ {x ′3, x ′2y, x ′y ′2, y ′3, x ′4, x ′3y ′, x ′2y ′2, x ′y ′3, y ′4}, (B 1)

where {. . .} is a combination of third- and fourth-order terms with arbitrary
coefficients. These coefficients, along with A, B , C, D and E, are found from local
least-squares fitting: ∑

j∈Ai∪A(2)
i

[z′
j − R4(x

′
j , y ′

j )]
2 → min . (B 2)

Here, Ai is the set of mesh nodes directly connected to xi , and A(2)
i is the second

layer of nodes around xi . Since, for the fixed topology meshes we are using, each
node has six (minimum five, in rare cases) neighbours, the number of elements in
Ai ∪ A(2)

i is at least 14 (typically 18). Accordingly, the linear (and symmetric) 14 × 14
system of equations for the coefficients of R4(x

′, y ′) obtained from (B 2) is uniquely
solvable. With A, B , etc. found, the normal vector n(xi) is calculated as

n(xi) = (−A, − B, 1)/(1 + A2 + B2)1/2 (B 3)

(in intrinsic coordinates), while the mean curvature at xi takes the form

k(xi) =
−C(1 + B2) − E(1 + A2) + DAB

(1 + A2 + B2)3/2
. (B 4)
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This method, although slightly more complex than the best-paraboloid algorithm,
remains fast, since no iterations are involved (unlike in Zinchenko et al. 1997, we
are not trying to reach A= B = 0 iteratively). The initial approximations no(xi) were
prepared by the best paraboloid-spline method (Zinchenko & Davis 2000), although
a simpler choice of the normal vectors from the preceding time step as no would
probably suffice.

Appendix C. Constriction-adaptive meshing of spherical particles
Let xo be the constriction centre. An initial, uniform unstructured triangulation on

each sphere Ŝα is modified iteratively to adapt it to the distances from xo. Namely,
the new positions of the mesh nodes xi after an iteration are

xi
new = ζ xi,o

new + (1 − ζ )xi , xi,o
new =

(∑
j∈Ai

Wj

)−1 ∑
j∈Ai

Wj xj , (C 1)

where Ai is the set of nodes on Ŝα directly connected to xi , Wj = ‖ xj − xo ‖ − α , and
α > 0 is the adaptation parameter. The relaxation parameter ζ is used for gradual
mesh transition

ζ =0.25 min
i

�xi

‖ xi,o
new − xi ‖

, (C 2)

where �xi is the shortest distance from xi to its neighbours xj , j ∈ Ai , and the

minimum in (C 2) is taken over all nodes xi ∈ Ŝα . After the operations (C 1), nodes

xi
new are scaled about the particle centre x̂c

α to remain on Ŝα . Let

χ = max
i

(Wi�xi)/ min
i

(Wi�xi). (C 3)

Small values of χ yield adaptivity, the mesh size �xi correlating with ‖xi − xo‖α .
Accordingly, we start monitoring the ratio (C 3) after about 10 iterations, and stop
calculations when χ reaches a local minimum. The larger α, the higher the adaptivity,
but we found only moderately adaptive meshes to be useful in the calculations of § 4,
achieved for α = 1/2.

This simple, fixed-topology algorithm can be generalized for non-spherical shapes
and multiparticle systems.
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